
MANCAF: A Framework for Building
Collaborative Applications in Mobile Ad Hoc

Networks
Mr. Hardik S. Mehta#1, Dr. Dhaval R. Kathiriya*2

#Research Scholar, School of Computer Science, RK University, Rajkot
*Director IT, Anand Agricultural University, Anand

Abstract-- This paper presents the MANCAF framework that
enables programmers to develop mobile collaborative
applications. The framework provides an API that is easy to
adopt and capable of creating advanced collaborative
applications. The framework was built to provide applications
providing pure peer-to-peer network where all nodes have the
same responsibility and services. Further, the MANCAF
framework provides services to transparently manage the
finding of new and lost peers. The message component of the
framework makes it possible to exchange any kind of data
between clients. The MANCAF has been implemented in Java
2 Micro Edition (J2ME) and runs on standard mobile phones.
The framework supports management and communication of
mobile ad hoc networks (MANETs) like Bluetooth. The paper
describes the architecture, the API and the application
developed using the MANCAF framework.

Keywords— Collaborative Application, Framework Designing,
Mobile Ad-hoc Network.

I. INTRODUCTION

Collaborative applications are not an exception when we
are developing an application which satisfies the user need
through application functionality. We can easily develop an
application by determining user’s needs in advance and
then developing a correspondent application but the
experience proves that it is not the case always. Users will
refuse to use such application that does not support their
needs.
Most wireless devices support some kind of personal area
network (PAN) technologies like IrDA and/or Bluetooth
[1]. PANs are commonly used for transferring data between
two mobile devices. A PAN can be seen as a digital sphere
around the mobile device enabling a collaborative network
for users within range. The digital sphere opens for mobile
computer supported cooperative work (mobile CSCW) [2]
[3]. In such environments, the support for mobile peer-to-
peer is essential, and the support and establishment of
mobile ad hoc networks (MANETs) are necessary. A
MANET is a self-configuring network where devices can
join and leave the network dynamically making the
wireless network topology unstable and unpredictable.
MANETs can be utilized in situations where persons with
mobile devices meet and there is a need for exchange of
data.

Figure 1: Collaboration in PAN Technologies

MANETs enable mobile users to interact in new ways. The
interaction between users can either be explicitly initiated
by the users, it can be automatically initiated by the mobile
devices, or a hybrid of the two [4]. Such applications can
be used for initiating collaboration between users of same
interests, e.g., an application for finding people with same
interest in a group meeting [5]. Further, MANETs can be
used to create application for proximity chats and file
exchanges, or simply for free time like games.
The MANCAF framework is introduced to enable rapid
development of collaborative applications for mobile
devices on the Java 2 Micro Edition (J2ME) platform. Main
goal is to develop a high-level programming framework
that made it possible for developers to only use simple
primitives and methods to manage the complexity of
MANETs. MANCAF framework is transparent and hides
the network technology used for communication. The
framework enables researchers and developers to explore
utilization of MANETs and how MANET applications can
provide collaborative support for mobile users. The main
contribution of this paper is to describe the MANCAF
framework and experiences us from building and using the
framework.
The rest of the paper is organized as follows. Section 2
describes the architecture and the design of the MANCAF
framework. Section 3 describes how the framework can be
used in applications development. Section 4 relates
MANCAF framework to similar approaches. Finally,
Section 5 concludes the paper and defines future work.

II. MANCAF FRAMEWORK

This section describes the architecture, design and
implementation issues related to the MANCAF framework.

Hardik S. Mehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 232-236

www.ijcsit.com 232

MIDlet Application

MANCAF Framework

JSR82 JSR75

MIDP

CLDC

A. MANCAF and J2ME

Sun Microsystems developed Java 2 Micro Edition (J2ME)
[6] to provide a general execution platform for resource
constrained devices. J2ME consists of various
configurations, profiles and optional packages to support
various kinds of equipment. For mobile devices like mobile
phones and PDAs, the Connected Limited Device
Configuration (CLDC) is the most common configuration
that is tailored for devices with wireless network capacities.
In the same way the Mobile Information Device Profile
(MIDP) is the most used profile for such devices. The
MIDP provides an environment for developing and
managing applications, called MIDlets, including GUI
libraries [6]. Most mobile phones sold today supports
J2ME and MIDP 2.0. In addition, some mobile phone
models support a variety of optional packages that that
provides API for various purposes like location, 3D
graphics, multimedia support, security, speech etc. Figure 2
shows how our MANCAF framework fits into the J2ME
environment.

Figure 2: MANCAF and J2ME

Our framework is built upon MIDP 2.0. In addition, the
MANCAF framework uses two optional packages:
• JSR82: J2ME API to access and manage Bluetooth
networks.
• JSR75: J2ME API to access Personal Information
Management (PIM). The JSR75 makes it possible to read
and write to the file system as well as access data (both
read and write) in the built-in address book and calendar of
the mobile device.
The current MANCAF implementation only supports
Bluetooth networks, but the architecture is made modular
to also support other types of networks when they become
supported in the J2ME environment.

B. MANCAF Framework Design:

The MANCAF design is based on a layered architectural
pattern where each layer is assigned with its own
responsibility, and one layer is based on the layer below.
By using the layered approach, the architecture would gain
positive characteristics like modularity and transparency.
The negative effect by using this approach could be slower
execution if the applications often have to go up and down
several layers to carry out the operations. As the MANCAF

framework should be used on resource constrained
execution platform, we decided to use few layers in the
architecture. Figure 3 shows the compact design and Figure
4 shows the high-level architecture of MANCAF.

Figure 3: Compact Design of MANCAF

Node: A node is a logical representation of a peer, i.e., a
mobile phone running the framework. Two or more nodes
can form a mobile ad hoc network.
Group: A group is a collection of nodes that know of each
other’s existence. All the nodes in a group can
communicate with each other.
Network: A network is an abstraction of the network layer
representing the communication medium accessed by the
framework instance. The network layer can consist of
several network implementations that also can be run
simultaneously.
Concurrency: This component is responsible for managing
the conflict during the collaboration.
Session: A session represents the lifetime of all the
communication between the nodes in a group. A session
keeps track of known nodes, groups and available network
mediums.
Framework: This component is responsible for whole
collaboration. All communication between the user
interface and the functionality of framework done through
this. It receives message from connection manager and it
forwards each message to appropriate component.
Document: This component is responsible for managing
the document.

Figure 4: High-Level Design of MANCAF

Application: A collaborative application will be
implemented as a MIDlet running on top of the MANCAF
framework.

Hardik S. Mehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 232-236

www.ijcsit.com 233

C. Design and Implementation:

This section describes design and implementation decisions
made in MANCAF to provide a transparent high-level API.
Pure versus hybrid peer-to-peer model: Pure peer-to-
peer approach where all the peers have the same
responsibility for managing resources and communication
is not supported directly in Bluetooth. The Bluetooth
technology is based on a master-slave communication
protocol, where the Bluetooth master will search for nearby
Bluetooth devices that will become slaves when
communicating. The master-slave configuration is essential
the same as client server and suffers from the same
problems of single point for failure. A possible solution to
avoid this problem could be to make the master node
delegate the server responsibility to a new node in case of a
failure, but this would require a very complex protocol
without getting a high availability of the system. In
MANCAF we implemented a pure peer-to-peer protocol
avoiding the difficulties of the master-slave paradigm. The
master-slave connections are established dynamically when
there is a need for one node to send a message to another
node or nodes. This means that in MANCAF all the nodes
know all other nodes, and every node have the same
responsibility.
Communication protocol: Bluetooth provides two
different protocols for implementing communication
between peers: RFCOMM and OBEX. RFCOMM emulates
a RS-232 serial connection, which provides a stream-based
interface. The advantage using RFCOMM is that it is very
straightforward to implement in J2ME, but it has some
major disadvantages. RFCOMM only supports one session
at a time between two devices, and the maximum amount
of active RFCOMM services a Bluetooth device can have
is 30. When RFCOMM is used, the receiving Bluetooth
device must read the stream and later parse the stream.
OBEX is much more versatile than RFCOMM and
provides support for setting up a session of two
communicating devices. The information is sent between
the devices in the form of a put or a request pattern. In
contrast to RFCOMM, OBEX also fully supports headers
(also user defined) to describe the context of the message.
MANCAF uses the OBEX protocol that enables the support
for a variety of types of messages including serialsable
objects. It also makes it possible to only send the headers,
making it possible for the client to decide to receive the
data or not.
Detecting new nodes: MANETs are characterized by a
very dynamic network topology where nodes dynamically
added and removed from the network. The discovery of
new nodes in MANCAF implemented using the Bluetooth
discovery protocol provided in J2ME that searches for all
nearby Bluetooth devices. It then filters and performs a
service search for all mobile phones detecting all devices
running a specific MANCAF service. If the discovery
detects any new nodes, references to the new nodes are
created so that a connection can be established later on.
After a completed search, the node shares the result with all
the notes it has found. This process is illustrated in Figure
5. In 5A, node A searchers and discovers B and C. In 5B,
node A sends messages to B and C, which contain

information about all the nodes in the vicinity. A search for
new nodes is initiated when a MANCAF application is run.
How often the search for new nodes is run during the
execution of an application is up to the application
developer to decide.

 A B

Figure 5: Detecting a new node

Initialization of the framework: The first time a
MANCAF application is run, the framework has to be
initiated from the MIDlet (the application) by calling the
method initialize(). The initialization will be performed
through the layers of the framework by initializing the
session layer, the network layer and the Bluetooth
implementation. The last step of the initialization process is
to create a network listener (in current version a Bluetooth
listener). The network listener makes it now possible for
other nodes running the application to perform a service
discovery and find this node. After the framework has been
initiated, the MIDlet can start a search for other nodes as
shown in Figure 6. The search is performed through the
layers of the framework and the MIDlet is alerted when a
node is found.
Other design considerations: When testing J2ME
applications in the actual execution environment, there was
no support for a console for test output on the mobile
devices. Even though this is available on simulators
running on PCs, it is essential to be able to track errors on
the mobile devices. The applications running fine on
simulators do not necessarily behave the same way on the
physical mobile device. To catch and manage runtime
errors, the framework provides a strong handling of
exceptions that catches typical common errors like lack of
initialization of framework, file, group and node not found
etc. In addition to the exception handling, we also provide a
log package that can be used by all classes in the
framework that stores and manages runtime-messages. The
log is useful for debugging as well as getting real-time
information of the framework’s progress and well-being.

Figure 6: Sequence Diagram for initial Search Node

A

C

B

A

C

B

Hardik S. Mehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 232-236

www.ijcsit.com 234

III. MANCAF APPLICATION DEVELOPMENT

As mentioned in the beginning of this paper, a main goal of
the MANCAF framework is to create a framework for
collaborative application development of mobile peer-to-
peer applications. In this section, we will describe through
code examples the main parts of the MANCAF that an
application developer has to use.

A. Initialization of Application

Before you start to create any application, you need to
import all the necessary parts of the framework

public class MANCAFChat extends MIDlet implements
FrameworkSubscriber, Commandlistener {
private Framework framework ;
framework = Framework . getInstance (”MyGroup” , ”
Chat2Me ” , new Bluetooth () , this) ;
framework.initialize() ;
framework.search() ;

The MIDlet created must implement the
FrameworkSubscriber interface from the MANCAF
framework. The CommandListener is a J2ME interface to
catch events from the user interface. Then a framework
variable must be created. Then initiate the framework with
the parameters for name of group, name of service, the
network used and a reference to the MIDlet itself. The
device running the application is now available for service
discovery from other devices running MANCAF. Next task
is to search for nearby devices running the same MANCAF
service.

B. Event-handling in MANCAF
After the framework has been initiated, the application
need to implement the four methods, nodeFound,
nodeGone, FinishSearch and messagePart provided by the
FrameworkSubscriber interface. The nodeFound is invoked
when a new node is found in the network. Note that there is
no automatic search for new nodes in MANCAF after the
initial search has been completed. The application
programmer must include a search for new nodes in the
application herself. The methods nodeGone is invoked
when the background ping/echo mechanism has detected
that one of the nodes in the group is not reachable anymore.
Detection for lost nodes is run in background by the
framework in a separate thread. The FinishSearch method
is called when the initial search has completed. Following
Listing show an example of how nodeFound, nodeGone
and FinishSearch can be implemented. In the
implementation of the first two methods, the
node.getNodename() method is used to notify the user
through the GUI that the node has joined or left. For the
latter method, the application sets the GUI in focus and
refreshes the GUI.

public void nodeFound (Node node)
{
dialog.append (node.getNodename () +” has joined ” , null
) ;
}

public void nodeGone (Node node) {
dialog.append (node.getNodename () +” has left ” , null)
;
}

public void FinishSearch () {
display.setCurrent (dialog) ;
}

C. Manage Messages

The management of messages in MANCAF is flexible in
terms of what data can be sent between peers. In addition,
the management of message interface is easy to use and
understand for the application programmer. Following
Listing shows an example of how two different types of
messages can be created and sent to another node.

Message message = new Message () ;
message.addElement(1 , ” type ”) ;
message.addElement(” Hello world ! ” , ” info”) ;
message.addReceipt(node);
framework.sendMessage(message) ;

Message message = new Message () ;
message.addElement(2 , ” type”) ;
message.addElement(” Hello world ! ” , ” info ”) ;
message.addReceipt(node);
framework.sendMessage(message) ;

Listing 4 shows how a message can be received. In this
example, the message element is used to identify what type
of data is sent in the message element called ”info”.

public void messageReceived (Message message)
{
int type = message . getInt (” type”) ;
switch (type)
 {
case 1 :
String info = message.getString (” info”) ;
break ;
case 2 :
boolean info = message.getBoolean (” info ”) ;
break ;
default :
break;
}
}

Hardik S. Mehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 232-236

www.ijcsit.com 235

IV. RELATED WORK
There are several projects that have developed frameworks
for developing collaborative application in MANETs. In
this section we will present the most prominent projects.

JXTA [7, 8] is an open-source framework for developing
P2P applications. JXTA provides a set of protocols and
APIs for general-purpose, computer-to-computer
communication and is platform and network independent.
JXME is JXTA for Java 2 Micro Edition (J2ME) and is a
lightweight implementation of JXTA for mobile devices. It
is specifically aimed at devices without sufficient
computation and/or communication resources to participate
in the network on their own. The JXME implementation
provides full JXTA functionality through the use of a relay
host. There is also a JXME proxiless initiative, but there is
currently no stable implementation. As JXTA does not
have a pure peer-to-peer version working for J2ME, it
cannot be compared to MANCAF.

Mobile Chedar [9] is a middleware being an extension to
the Chedar peer-to-peer network allowing mobile devices
to access the Chedar network and communicate to other
Mobile Chedars. The goal of the Chedar software is similar
to Peer2Me: To provide a convenient API for peer-to-peer
application developers. The Mobile Chedar is implemented
in J2ME and Bluetooth is used for communication. In
contrast to MANCAF, the Mobile Chedar is based on a
hybrid peer-to-peer model that uses a Mobile Chedar
gateway node as the master in the network. The Mobile
Chedar gateway node is run on a PC that also provides an
Internet gateway for the mobile nodes. However, this
approach suffers from having a single point of failure like
client-server solutions.

Proem [10] is a framework for developing and deploying
P2P collaborative applications in a mobile ad-hoc
networking environment. The main objective of Proem is to
provide a common framework for rapid development of
applications for ad-hoc network environments. The
framework is implemented in Java, and can be run on
various wireless mobile devices. Proem is designed to be
independent of underlying network transport protocols, and
can be implemented on top of TCP/IP, HTTP, Bluetooth
and others. The original Proem was based on a Java
Standard Edition, limiting the devices to run Proem to
powerful PDAs. There have been attempts to create a J2ME
version of Proem that have not succeeded.

MOBY [11] provides a network for mobile peer-to-peer
exchange of services and data. MOBY offer a dynamic

service location and client mapping to achieve an adaptive
network optimizing performance and reliability. MOBY
uses heavily JINI functionality and can there for not be run
in a J2ME environment.

V. CONCLUSION & FUTURE WORK
In this paper we have presented the MANCAF framework
for rapid development of mobile collaborative applications.
Despite the limitations in J2ME with a stripped down Java
class-library and the limited resources on mobile phones in
terms of CPU and memory we have managed to develop a
full-fledged framework that transparently manages a
MANET. The MANCAF API is very simple to learn and
consists only of a few lines for framework initialization and
implementation of four methods that will be invoked for
events.

The Future work is to develop as many as collaborative
application using MANCAF framework. The framework is
then tested to determine with checking that specified
technical and not technical.

REFERENCES
[1] Miller , B. A. and Bisdikian, C. (2004), Bluetooth Revealed,

Addison-Wesley, 2 edition
[2] Wiberg, M. and Grönlund, Ä. (2000), Exploring Mobile CSCW:

Five areas of questions for further research, In Proceedings of
IRIS23 (Information Research in Scandinavia), Trollhättan, Sweden.

[3] Papadopoulos, C (2006), Improving Awareness in Mobile CSCW,
IEEE Transactions on Mobile Computing, vol. 5, no. 10, pp. 1331-
1346, Oct.

[4] A. I. Wang, M. S. Norum, and C.-H. W. Lund. Issues related to
Development of Wireless Peer-to-Peer Games in J2ME. In First
Conference on Entertainment Systems (ENSYS 2006), page 6,
Guadeloupe, French Caribbean, February 23-25 2006.

[5] A. I. Wang, C.-F. Sørensen, and T. Fossum. Mobile Peerto-Peer
Technology used to Promote Spontaneous Collaboration. In The
2005 International Symposium on Collaborative Technologies and
Systems (CTS 2005), page 8, Saint Louis, Missouri, USA, May 15-
19 2005.

[6] S. Microsystems. Java 2 Platform, Micro Edition (J2ME). Web:
http://java.sun.com/j2me/, 2005

[7] J. Brendon and J. Wilson. JXTA. New Riders Publishing,2002
[8] N. Maibaum and T. Mundt. JXTA: A Technology Facilitating

Mobile Peer-To-Peer Networks. In International Mobility and
Wireless Access Workshop (MobiWac’02), pages 7–13, Fort Worth,
Texas, USA, 12 October 2002.

[9] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori. Mobile Chedar A
Peer-to-Peer Middleware for Mobile Devices. In Third IEEE
International Conference on Pervasive Computing and
Communications Workshops (PERCOMW’05), pages 86–90, 2005.

[10] G. Kortuem. A methodology and software platform for building
wearable communities. PhD thesis, University of Oregon, December
2002

[11] T. Horozov, A. Grama, V. Vasudevan, and S. Landis. MOBY - A
Mobile Peer-to-Peer Service and Data Network. In 2002
International Conference on Parallel Processing (ICPP’02),pages
437–444, 2002

Hardik S. Mehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 232-236

www.ijcsit.com 236

